APPENDIX D
EXAMPLES IN SUDAAN

In SUDAAN, the NCVS sample design must be appropriately specified for all SUDAAN procedures using the design and nest statements. The design=wr option must be included within the proc statement of each analysis. The following nest statement must be included to provide the stratification and PSU variables.

```
nest yr_grp v2117 v2118 / psulev=3;
```

Weight statements are also required, but vary depending on the type of estimate (as shown in Table 3-1). Victimization rates also utilize the adjustment factor (ADJINC_WT), as outlined in the examples below. Before interpreting results produced by SUDAAN, the design summary should always be examined to ensure that it matches with the input dataset and the specified design.

Examples 1 and 2 demonstrate how to estimate the total number of victimizations. Examples 3 and 4 demonstrate how to calculate the proportion of victimizations with given characteristics. Examples 5 and 6 demonstrate the calculation of personal and property victimization rates for victimization characteristics included on the modified person and household files, while Example 7 demonstrates the calculation of victimization rates for victimization characteristics not on the modified files. Examples are included for both single- and pooled-year estimates. Finally, Example 8 demonstrates how to identify low quality estimates and implement the rounding recommended as discussed in Section 4 of the user’s guide.

D.1 Victimization Totals

SUDAAN’s descript procedure is used to estimate the total number of victimizations from the modified incident-level file. The specific crime type of interest is specified in the var statement, and the domain(s) of interest (i.e. subsets of the population based on characteristics of the victimization or victim) are specified on the class and tables statements. Examples 1A-1C demonstrate the calculation of victimization totals for single years, and Examples 2A-2C demonstrate pooled year estimates.
Example 1: Number of victimizations, single year

Examples 1A and 1B below are estimates of personal crimes, while Example 1C is an estimate of property crimes. Examples 1A and 1C provide overall crime estimates, while Example 1B provides estimated totals for person-level characteristics of interest.

Example 1A - Total number of violent victimizations, 2011

Year(s): 2011
Crime Type: violent victimizations (vcrime)
Domain(s): n/a
Weight: newwgt
Subpopulation: within the United States (exclude_outUS=0); non-dummy records (dummy=0); 2011 (year=2011)

Code:

```proc descript data=adjincident design=wr; *a;
   subpopn exclude_outus=0 and dummy=0 and year=2011; *b;
   nest yr_grp v2117 v2118 / psulev=3; *c;
   weight newwgt; *d;
   var vcrime; *e;
   print total setotal; *f;
run;```

Code Comment(s):

a) Specifies input dataset and sample design
b) Limits analysis to records of interest
c) Specifies stratification and primary sampling units
d) Specifies analysis weight
e) Outcome of interest
f) Specify which estimates to print
Output:

S U D A A N
Software for the Statistical Analysis of Correlated Data
Copyright Research Triangle Institute August 2012
Release 11.0.0

DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With Replacement (WR) Design
Sample Weight: NEWWGT
Stratification Variables(s): YR_GRP V2117
Primary Sampling Unit: V2118

Number of observations read : 37853 Weighted count :115824878
Observations in subpopulation : 7255 Weighted count : 23041441
Denominator degrees of freedom : 160

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND YEAR = 2011
by: Variable, SUDAAN Reserved Variable One.

<table>
<thead>
<tr>
<th>Variable</th>
<th>SUDAAN Reserved Variable One</th>
<th>Total</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCRIME</td>
<td>Total</td>
<td>5812522.79</td>
<td>5812522.79</td>
</tr>
<tr>
<td></td>
<td>SE Total</td>
<td>357912.36</td>
<td>357912.36</td>
</tr>
</tbody>
</table>
Example 1B - Total number of violent victimizations by sex, age category, and race/ethnicity, 2011

Year(s): 2011
Crime Type: violent victimizations (vcrime)
Domain(s): sex (sex), age category (agecat), and race/ethnicity (race_eth)
Weight: newwgt
Subpopulation: within the United States (exclude_outUS=0); non-dummy records (dummy=0); 2011 (year=2011)

Code:

```
proc descript data=adjincident design=wr;
 subpopn exclude_outus=0 and dummy=0 and year=2011;
 nest yr_grp v2117 v2118 / psulev=3;
 weight newwgt;
 var vcrime;
 class sex agecat race_eth / nofreqs; *a;
 tables sex agecat race_eth; *b;
 print total setotal;
run;
```

Code Comment(s):

a) Domain variables (victim characteristics), nofreqs option excludes frequency tables from output for class variables
b) Domain variables (victim characteristics)

Output:

```
SUDAAN
Software for the Statistical Analysis of Correlated Data
Copyright Research Triangle Institute August 2012
Release 11.0.0

DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With Replacement (WR) Design
Sample Weight: NEWWGT
Stratification Variables(s): YR_GRP V2117
Primary Sampling Unit: V2118

Number of observations read : 37853 Weighted count :115824878
Observations in subpopulation : 7255 Weighted count : 23041441
Denominator degrees of freedom : 160
Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND YEAR = 2011
by: Variable, SEX.

<table>
<thead>
<tr>
<th>Variable</th>
<th>SEX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>VCRIME</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>SE Total</td>
</tr>
</tbody>
</table>

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND YEAR = 2011
by: Variable, AGECAT.
```
### VCRIME

<table>
<thead>
<tr>
<th>Variable</th>
<th>AGECAT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>VCRIME</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>SE Total</td>
</tr>
</tbody>
</table>

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND YEAR = 2011
by: Variable, AGECAT.

<table>
<thead>
<tr>
<th>Variable</th>
<th>AGECAT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21 to 24</td>
</tr>
<tr>
<td>VCRIME</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>SE Total</td>
</tr>
</tbody>
</table>

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND YEAR = 2011
by: Variable, AGECAT.

<table>
<thead>
<tr>
<th>Variable</th>
<th>AGECAT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65 or older</td>
</tr>
<tr>
<td>VCRIME</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>SE Total</td>
</tr>
</tbody>
</table>

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND YEAR = 2011
by: Variable, RACE_ETH.

<table>
<thead>
<tr>
<th>Variable</th>
<th>RACE_ETH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>White</td>
</tr>
<tr>
<td>VCRIME</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>SE Total</td>
</tr>
</tbody>
</table>

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND YEAR = 2011
by: Variable, RACE_ETH.

<table>
<thead>
<tr>
<th>Variable</th>
<th>RACE_ETH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-Hispanic</td>
</tr>
<tr>
<td></td>
<td>Other</td>
</tr>
<tr>
<td>VCRIME</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>SE Total</td>
</tr>
</tbody>
</table>

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND YEAR = 2011
by: Variable, RACE_ETH.
**Example 1C - Total number of property victimizations, 2011**

**Year(s):** 2011  
**Crime Type:** property victimizations (*pcrime*)  
**Domain(s):** n/a  
**Weight:** `newwgt`  
**Subpopulation:** within the United States (*exclude_outUS*=0); non-dummy records (*dummy*=0); 2011 (*year*=2011)

**Code:**
```sas
proc descript data=adjincident design=wr;
 subpopn exclude_outus=0 and dummy=0 and year=2011;
 nest yr_grp v2117 v2118 / psulev=3;
 weight newwgt;
 var pcrime;
 print total setotal;
run;
```

**Output:**

```
SUDAAN Software for the Statistical Analysis of Correlated Data
Copyright Research Triangle Institute August 2012
Release 11.0.0

DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With Replacement (WR) Design
Sample Weight: NEWWGT
Stratification Variables(s): YR_GRP V2117
Primary Sampling Unit: V2118

Number of observations read : 37853 Weighted count :115824878
Observations in subpopulation : 7255 Weighted count : 23041441
Denominator degrees of freedom : 160

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND YEAR = 2011
by: Variable, SUDAAN Reserved Variable One.

<table>
<thead>
<tr>
<th>Variable</th>
<th>SUDAAN Reserved Variable One</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCRIME</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>SE Total</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17063147.83</td>
</tr>
<tr>
<td></td>
<td>543578.64</td>
</tr>
</tbody>
</table>
```

---

6
Example 2: Number of crimes, aggregated years

Examples 2A and 2B are estimates of personal crimes, while Example 2C is an estimate of a property crime. Examples 2A and 2C provide overall crime estimates and Example 2B provides estimated totals for a victimization-level characteristic of interest. The code provided calculates the estimated number of victimization across the pooled years. To calculate the average number of victimizations per year, estimated totals and standard errors must be divided by the number of pooled years, as shown in the following examples.

Example 2A - Total and average number of aggravated assaults, 2009–2011

Year(s): 2009-2011
Crime Type: aggravated assaults (aast)
Domain(s): n/a
Weight: newwgt
Subpopulation: within the United States (exclude_outUS=0); non-dummy records (dummy=0); 2009-2011 ((2009 <= year) and (year <=2011))

Code:
```
proc descript data=adjincident design=wr;
 subpopn exclude_outus=0 and dummy=0 and (2009 <= year) and (year <=2011); *a;
 nest yr_grp v2117 v2118 / psulev=3;
 weight newwgt;
 var aast;
 print total setotal;
run;
```

Code Comment(s):
  a) Subpopn statement includes the range of years to be analyzed

Output:

SUDAAN Software for the Statistical Analysis of Correlated Data
Copyright Research Triangle Institute August 2012
Release 11.0.0

DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With Replacement (WR) Design
Sample Weight: NEWWGT
Stratification Variables(s): YR_GRP V2117
Primary Sampling Unit: V2118

Number of observations read : 37853    Weighted count :115824878
Observations in subpopulation : 28701    Weighted count : 65552798
Denominator degrees of freedom : 160
Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND ( 2009 <= YEAR ) AND ( YEAR <= 2011 )
by: Variable, SUDAAN Reserved Variable One.

<table>
<thead>
<tr>
<th>Variable</th>
<th>SUDAAN Reserved Variable One</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

| AAST | Total | 2940415.60 | 2940415.60 |
|      | SE Total | 160814.15 | 160814.15 |

NOTE: The estimate above represents the total number of aggravated assaults from 2009-2011. To obtain the average number of aggravated assaults, both the estimate and the standard error must be divided by the number of pooled years (3), as follows:

\[
\text{avg number of aggravated assaults} = \frac{\text{total number of aggravated assaults}}{\text{number of pooled years}}
\]
\[
= \frac{2940415.60}{3}
\]
\[
= 980138.53
\]

\[
\text{SE(avg number of aggravated assaults)} = \frac{\text{se(total number of aggravated assaults)}}{\text{number of pooled years}}
\]
\[
= \frac{160814.15}{3}
\]
\[
= 53604.72
\]
**Example 2B - Total and average number of aggravated assaults involving firearm, 2009–2011**

**Year(s):** 2009-2011  
**Crime Type:** aggravated assaults (aast)  
**Domain(s):** weapon category (weapcat)  
**Weight:** newwgt  
**Subpopulation:** within the United States (exclude_outUS=0); non-dummy records (dummy=0);  
2009-2011 ((2009 <= year) and (year <= 2011))

**Code:**

```plaintext
proc descript data=adjincident design=wr;
subpopn exclude_outus=0 and dummy=0 and (2009 <= year) and
(year <= 2011);
nest yr_grp v2117 v2118 / psulev=3;
weight newwgt;
var aast;
class weapcat / nofreqs;
tables weapcat;
print total setotal;
run;
```

**Output:**

```
SOFTWARE
Software for the Statistical Analysis of Correlated Data
Copyright Research Triangle Institute August 2012
Release 11.0.0

DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With
Replacement (WR) Design
Sample Weight: NEWWGT
Stratification Variables(s): YR_GRP V2117
Primary Sampling Unit: V2118

Number of observations read: 37853
Weighted count: 115824878
Observations in subpopulation: 20701
Weighted count: 65552798
Denominator degrees of freedom: 160

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND (2009 <= YEAR) AND (YEAR <= 2011)
by: Variable, WEAPCAT.

<table>
<thead>
<tr>
<th>Variable</th>
<th>WEAPCAT</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>No Weapon</td>
<td>Firearm</td>
<td>Knife or sharp object</td>
</tr>
<tr>
<td>AAST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>2940415.60</td>
<td>318541.93</td>
<td>778706.29</td>
<td>642022.34</td>
</tr>
<tr>
<td></td>
<td>SE Total</td>
<td>160814.15</td>
<td>53739.51</td>
<td>81552.16</td>
<td>65520.62</td>
</tr>
</tbody>
</table>
```

Variance Estimation Method: Taylor Series (WR)  
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND (2009 <= YEAR) AND (YEAR <= 2011)  
by: Variable, WEAPCAT.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Other type weapon</th>
<th>Type weapon unknown</th>
<th>Do Not Know if off had weapon</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAST</td>
<td>Total</td>
<td>939927.30</td>
<td>228754.77</td>
</tr>
<tr>
<td>SE Total</td>
<td></td>
<td>96628.22</td>
<td>52287.67</td>
</tr>
</tbody>
</table>

NOTE: The estimate above represents the total number of aggravated assaults involving a firearm from 2009-2011. To obtain the average number of aggravated assaults involving a firearm, both the estimate and the standard error must be divided by the number of pooled years (3), as follows:

\[
\text{avg number of aggravated assaults w firearm} = \frac{\text{total number of aggravated assaults w firearm}}{\text{number of pooled years}}
\]

\[
= \frac{778706.29}{3}
\]

\[
= 259568.76
\]

\[
\text{SE(avg number of aggravated assaults w firearm)} = \frac{\text{se(total number of aggravated assaults w firearm)}}{\text{number of pooled years}}
\]

\[
= \frac{81552.16}{3}
\]

\[
= 27184.05
\]
Example 2C - Total and average number of household burglaries, 2009-2011

Year(s): 2009-2011
Crime Type: household burglary (hburg)
Domain(s): n/a
Weight: newwgt
Subpopulation: Within the United States (exclude_outUS=0); non-dummy records (dummy=0); 2009-2011 ((2009 <= year) and (year <= 2011))

Code:

```
proc descript data=adjincident design=wr;
 subpopn exclude_outus=0 and dummy=0 and (2009 <= year) and (year <= 2011);
 nest yr_grp v2117 v2118 / psulev=3;
 weight newwgt;
 var hburg;
 print total setotal;
run;
```

Output:

```
Number of observations read : 37853 Weighted count :115824878
Observations in subpopulation : 20701 Weighted count : 65552798
Denominator degrees of freedom : 160

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND (2009 <= YEAR) AND (YEAR <= 2011)
by: Variable, SUDAAN Reserved Variable One.

<table>
<thead>
<tr>
<th>Variable</th>
<th>SUDAAN Reserved Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>One</td>
</tr>
<tr>
<td></td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HBURG</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>10201317.31</td>
</tr>
<tr>
<td></td>
<td>10201317.31</td>
</tr>
<tr>
<td></td>
<td>SE Total</td>
</tr>
<tr>
<td></td>
<td>336711.45</td>
</tr>
<tr>
<td></td>
<td>336711.45</td>
</tr>
</tbody>
</table>
```

SUDAAN Software for the Statistical Analysis of Correlated Data
Copyright Research Triangle Institute August 2012
Release 11.0.0

DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With Replacement (WR) Design
Sample Weight: NEWWGT
Stratification Variables(s): YR_GRP V2117
Primary Sampling Unit: V2118

S U D A A N
Software for the Statistical Analysis of Correlated Data
Copyright Research Triangle Institute August 2012
Release 11.0.0

DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With Replacement (WR) Design
Sample Weight: NEWWGT
Stratification Variables(s): YR_GRP V2117
Primary Sampling Unit: V2118

Number of observations read : 37853    Weighted count :115824878
Observations in subpopulation : 20701    Weighted count : 65552798
Denominator degrees of freedom :    160

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND ( 2009 <= YEAR ) AND ( YEAR <= 2011 )
by: Variable, SUDAAN Reserved Variable One.
NOTE: The estimate above represents the total number of household burglaries from 2009-2011. To obtain the average number of household burglaries, both the estimate and the standard error must be divided by the number of pooled years (3), as follows:

\[
\text{avg number of household burglaries} = \frac{\text{total number of household burglaries}}{\text{number of pooled years}} = \frac{10201317.31}{3} = 3400439.10
\]

\[
SE(\text{avg number of household burglaries}) = \frac{se(\text{total number of household burglaries})}{\text{number of pooled years}} = \frac{336711.45}{3} = 112237.15
\]
D.2 Victimization Proportions

SUDAAN’s `crosstab` procedure is used to estimate the percent distribution of victimizations in a specific domain across covariates from the modified incident-level file. If the analysis is limited to a specific domain (i.e. a subset of the population based on characteristics of the victimization or victim) then it is specified on the `subpopn` statement. Covariates of interest are specified on the `class` and `tables` statements.

**Example 3: Percent distribution of victims across characteristics, single year**

*Example 3A* is an estimate of personal crimes, while *Example 3B* is an estimate of property crimes. In *Example 3A*, both the analysis domain and covariates are specified based on person- and incident-level characteristics. In *Example 3B*, the analysis domain is specified based on an incident-level characteristic, while the covariates are household-level characteristics.

**Example 3A - Distribution of female violent crime victims by age category, race/ethnicity, and victim-offender relationship, 2011**

Year(s): 2011  
Domain(s): female (sex=2); violent victimizations (vcrime=1)  
Covariate(s): age category (agecat); race/ethnicity (race_eth); victim-offender relationship (direl)  
Weight: newwgt  
Subpopulation: within the United States (exclude_outUS=0); non-dummy records (dummy=0); 2011 (year=2011); female (sex=2); violent victimizations (vcrime=1)

**Code:**
```
proc crosstab data=adjincident design=wr; *a;
 subpopn exclude_outus=0 and dummy=0 and year=2011 and sex=2
 and vcrime=1; *b;
 nest yr_grp v2117 v2118 / psulev=3; *c;
 weight newwgt; *d;
 class agecat race_eth direl /nofreqs; *e;
 tables agecat race_eth direl; *f;
 print rowper serow; *g;
run;
```

**Code Comment(s):**
- a) Specifies input dataset and sample design
- b) Limits analysis to records of interest
- c) Specifies stratification and primary sampling units
- d) Specifies analysis weight
- e) Covariates of interest
- f) Covariates of interest
- g) Specify which estimates to print (row percents and standard errors)

**Output:**
DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With Replacement (WR) Design
Sample Weight: NEWG
Stratification Variables(s): YR_GRP V2117
Primary Sampling Unit: V2118

Number of observations read   : 37853    Weighted count :115824878
Observations in subpopulation : 642    Weighted count : 2602798
Denominator degrees of freedom : 160
Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND YEAR = 2011 AND SEX = 2 AND VCRIME = 1
by: AGECAT.

<table>
<thead>
<tr>
<th>AGECAT</th>
<th>Total</th>
<th>12 to 14</th>
<th>15 to 17</th>
<th>18 to 20</th>
<th>21 to 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row Percent</td>
<td>100.00</td>
<td>7.64</td>
<td>6.26</td>
<td>15.50</td>
<td>9.31</td>
</tr>
<tr>
<td>SE Row Percent</td>
<td>0.00</td>
<td>1.86</td>
<td>1.33</td>
<td>5.37</td>
<td>1.64</td>
</tr>
</tbody>
</table>

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND YEAR = 2011 AND SEX = 2 AND VCRIME = 1
by: RACE_ETH.

<table>
<thead>
<tr>
<th>RACE_ETH</th>
<th>Total</th>
<th>Non-Hispanic</th>
<th>Non-Hispanic</th>
<th>Hispanic</th>
<th>Non-Hispanic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>White</td>
<td>Black</td>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AGECAT</th>
<th>25 to 34</th>
<th>35 to 49</th>
<th>50 to 64</th>
<th>65 or older</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row Percent</td>
<td>19.30</td>
<td>24.58</td>
<td>12.91</td>
<td>4.48</td>
</tr>
<tr>
<td>SE Row Percent</td>
<td>2.36</td>
<td>3.05</td>
<td>1.99</td>
<td>1.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RACE_ETH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Hispanic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>More than One Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Row Percent</td>
<td>4.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE Row Percent</td>
<td>1.29</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND YEAR = 2011 AND SEX = 2 AND VCRIME = 1 by: DIREL.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>DIREL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00</td>
</tr>
</tbody>
</table>

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND YEAR = 2011 AND SEX = 2 AND VCRIME = 1 by: DIREL.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>DIREL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>do not know relationship of offenders</td>
</tr>
<tr>
<td></td>
<td></td>
<td>do not know number</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Row Percent</td>
<td>2.71</td>
<td></td>
</tr>
<tr>
<td>SE Row Percent</td>
<td>0.61</td>
<td></td>
</tr>
</tbody>
</table>
Example 3B - Distribution of property crime victims by household income, MSA status, and region, 2011

Year(s): 2011
Domain(s): property victimizations ($pcrime=1$)
Covariate(s): household income ($hincome$); MSA status ($msa$); region ($region$)
Weight: $newwgt$
Subpopulation: within the United States ($exclude_{outUS}=0$); non-dummy records ($dummy=0$); 2011 ($year=2011$); property victimizations ($pcrime=1$)

Code:
```plaintext
proc crosstab data=adjincident design=wr;
 subpopn exclude_outus=0 and dummy=0 and year=2011
 and pprime=1;
 nest yr_grp v2117 v2118 / psulev=3;
 weight newwgt;
 class hincome msa region / nofreqs;
 tables hincome msa region;
 print rowper serow;
run;
```

Output:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>HINCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Less</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$7,500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$15,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$25,000</td>
</tr>
<tr>
<td></td>
<td>Row Percent</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>SE Row Percent</td>
<td>0.00</td>
</tr>
</tbody>
</table>

DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With Replacement (WR) Design
Sample Weight: NEWWGT
Stratification Variables(s): YR_GRP V2117
Primary Sampling Unit: V2118

Number of observations read : 37853 Weighted count:115824878
Observations in subpopulation : 5857 Weighted count : 17063148
Denominator degrees of freedom : 160

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND YEAR = 2011 AND PCRIME = 1
by: HINCOME.
### Variance Estimation Method: Taylor Series (WR)

For Subpopulation: \( \text{EXCLUDE\_OUTUS} = 0 \) AND \( \text{DUMMY} = 0 \) AND \( \text{YEAR} = 2011 \) AND \( \text{PCRIME} = 1 \) by: \( \text{HINCOME} \).

<table>
<thead>
<tr>
<th>HINCOME</th>
<th>$35,000</th>
<th>$50,000</th>
<th>$75,000</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>to</td>
<td>to</td>
<td>or more</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$49,999</td>
<td>$74,999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Row Percent</td>
<td>11.72</td>
<td>11.50</td>
<td>16.47</td>
<td>26.06</td>
</tr>
<tr>
<td>SE Row Percent</td>
<td>0.63</td>
<td>0.70</td>
<td>0.73</td>
<td>1.13</td>
</tr>
</tbody>
</table>

### Variance Estimation Method: Taylor Series (WR)

For Subpopulation: \( \text{EXCLUDE\_OUTUS} = 0 \) AND \( \text{DUMMY} = 0 \) AND \( \text{YEAR} = 2011 \) AND \( \text{PCRIME} = 1 \) by: \( \text{HOUSEHOLD\_LOCALE} \).

<table>
<thead>
<tr>
<th>HOUSEHOLD LOCALE</th>
<th>Total</th>
<th>Urban</th>
<th>Suburban</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row Percent</td>
<td>100.00</td>
<td>40.60</td>
<td>46.62</td>
<td>12.79</td>
</tr>
<tr>
<td>SE Row Percent</td>
<td>0.00</td>
<td>1.51</td>
<td>1.62</td>
<td>1.63</td>
</tr>
</tbody>
</table>

### Variance Estimation Method: Taylor Series (WR)

For Subpopulation: \( \text{EXCLUDE\_OUTUS} = 0 \) AND \( \text{DUMMY} = 0 \) AND \( \text{YEAR} = 2011 \) AND \( \text{PCRIME} = 1 \) by: Region.

<table>
<thead>
<tr>
<th>Region</th>
<th>Total</th>
<th>Northeas-</th>
<th>Midwest</th>
<th>South</th>
<th>West</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row Percent</td>
<td>100.00</td>
<td>13.40</td>
<td>21.41</td>
<td>34.81</td>
<td>30.38</td>
</tr>
<tr>
<td>SE Row Percent</td>
<td>0.00</td>
<td>1.08</td>
<td>1.45</td>
<td>1.52</td>
<td>1.40</td>
</tr>
</tbody>
</table>
**Example 4: Percent distribution of victims across characteristics, aggregated years**

*Example 4A* is an estimate of personal crimes, while *Example 4B* is an estimate of property crimes. Both examples specify multiple covariates based on incident-level characteristics.

**Example 4A - Percent of violent victimizations reported and not reported to police by type of crime, 2009-2011**

**Year(s):** 2009-2011  
**Domain(s):** violent victimizations (*vcrime* = 1)  
**Covariate(s):** report status (*notify*); type of crime (*newoff*)  
**Weight:** *newwgt*  
**Subpopulation:** within the United States (*exclude_outUS* = 0); non-dummy records (*dummy* = 0); 2009-2011 ((2009 <= *year*) and (*year* <= 2011)); violent victimizations (*vcrime* = 1)

**Code:**

```plaintext
proc crosstab data=adjincident design=wr;
 subpopn exclude_outus=0 and dummy=0 and (2009 <= *year*) and (*year* <= 2011) and *vcrime*=1;
 nest yr_grp v2117 v2118 / psulev=3;
 weight newwgt;
 class newoff notify / nofreqs;
 tables newoff*notify; *a;
 print rowper serow;
run;
```

**Code Comment(s):**

a) The goal is to obtain the distribution of victimizations by report status for each type of violent crime. Therefore, *newoff* *notify* is specified on the *tables* statement and row percents and standard errors (*ROWPER* and *SEROW*) are requested. If the percent distribution of crimes among those reported or not reported to police were desired, column percents and standard errors (*COLPER* and *SECOL*) would be requested.

**Output:**

```
SUDAAN
Software for the Statistical Analysis of Correlated Data
Copyright Research Triangle Institute August 2012
Release 11.0.0

DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With Replacement (WR) Design
Sample Weight: NEWWGT
Stratification Variables(s): YR_GRP V2117
Primary Sampling Unit: V2118

Number of observations read : 37853 Weighted count : 115824878
Observations in subpopulation : 3760 Weighted count : 16417743
Denominator degrees of freedom : 160
```
Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND ( 2009 <= YEAR ) AND ( YEAR <= 2011 ) AND VCRIME = 1
by: NEWOFF, NOTIFY.

<table>
<thead>
<tr>
<th>NEWOFF</th>
<th>NOTIFY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Row Percent</td>
</tr>
<tr>
<td></td>
<td>SE Row Percent</td>
</tr>
<tr>
<td>Rape &amp; Sexual Assault</td>
<td>Row Percent</td>
</tr>
<tr>
<td></td>
<td>SE Row Percent</td>
</tr>
<tr>
<td>Robbery</td>
<td>Row Percent</td>
</tr>
<tr>
<td></td>
<td>SE Row Percent</td>
</tr>
<tr>
<td>Aggravated Assault</td>
<td>Row Percent</td>
</tr>
<tr>
<td></td>
<td>SE Row Percent</td>
</tr>
<tr>
<td>Simple Assault</td>
<td>Row Percent</td>
</tr>
<tr>
<td></td>
<td>SE Row Percent</td>
</tr>
</tbody>
</table>
Example 4B - Percent of property victimizations reported and not reported to police by type of crime, 2009-2011

Year(s): 2009-2011
Domain(s): property victimizations (pcrime=1)
Covariate(s): report status (notify); type of crime (newoff)
Weight: newwgt
Subpopulation: within the United States (exclude_outUS=0); non-dummy records (dummy=0); 2009-2011 ((2009 <= year) and (year <=2011)); property victimizations (pcrime=1)

Code:
```
proc crosstab data=adjincident design=wr;
 subpopn exclude_outus=0 and dummy=0 and (2009 <= year) and (year <=2011) and pcrime=1;
 nest yr_grp v2117 v2118 / psulev=3;
 weight newwgt;
 class newoff notify / nofreqs;
 tables newoff*notify;
 print rowper serow;
run;
```

Output:
```
SUDAAN
Software for the Statistical Analysis of Correlated Data
Copyright Research Triangle Institute August 2012
Release 11.0.0

DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With Replacement (WR) Design
Sample Weight: NEWWGT
Stratification Variables(s): YR_GRP V2117
Primary Sampling Unit: V2118

Number of observations read : 37853 Weighted count :115824878
Observations in subpopulation : 16813 Weighted count : 48697733
Denominator degrees of freedom : 160

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND (2009 <= YEAR) AND (YEAR <= 2011) AND PCRIME = 1
by: NEWOFF, NOTIFY.
```

20
<table>
<thead>
<tr>
<th>NEWOFF</th>
<th>NOTIFY</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total reported to</td>
<td>not reported to</td>
<td>do not know to</td>
<td>police</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Row Percent</td>
<td>100.00</td>
<td>38.19</td>
<td>61.13</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>SE Row Percent</td>
<td>0.00</td>
<td>0.52</td>
<td>0.52</td>
<td>0.10</td>
</tr>
<tr>
<td>Household</td>
<td>Row Percent</td>
<td>100.00</td>
<td>54.55</td>
<td>44.65</td>
<td>0.80</td>
</tr>
<tr>
<td>Burglary</td>
<td>SE Row Percent</td>
<td>0.00</td>
<td>1.51</td>
<td>1.50</td>
<td>0.41</td>
</tr>
<tr>
<td>Motor Vehicle</td>
<td>Row Percent</td>
<td>100.00</td>
<td>83.74</td>
<td>15.99</td>
<td>0.27</td>
</tr>
<tr>
<td>Theft</td>
<td>SE Row Percent</td>
<td>0.00</td>
<td>1.40</td>
<td>1.39</td>
<td>0.19</td>
</tr>
<tr>
<td>Theft</td>
<td>Row Percent</td>
<td>100.00</td>
<td>31.17</td>
<td>68.17</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>SE Row Percent</td>
<td>0.00</td>
<td>0.50</td>
<td>0.50</td>
<td>0.07</td>
</tr>
</tbody>
</table>
D.3 Victimization Rates

Victimization rates are calculated from the modified person-level file (for personal crimes) or the modified household-level file (for property crimes) using the `xmean` statement in SUDAAN’s `varagen` procedure. The victimization rate is first given a unique user-specified name, followed by a colon. Then, the victimization count for the victimization type of interest is multiplied by the victimization adjustment factor (`ADJINC_WT`), and this product is multiplied by 1,000. To calculate victimization rates for person- or household-level characteristics, `class` and `tables` statements are included. However, if victimization rates are desired based on incident-level characteristics, a separate `xmean` statement is defined for each level of the incident characteristic of interest. Alternatively, SUDAAN’s `descript` procedure can be used for the calculation of victimization rates, but because `descript` does not allow the user to specify a formula for the variable of interest, the analyst must first create a new variable equal to the product of the victimization count for the victimization type of interest and the victimization adjustment factor (`ADJINC_WT`), multiplied by 1,000. This new variable is used as the analysis variable in the `descript` procedure.

Exclusions based on the incident characteristics must be made when calculating victimization summaries, as outlined in Section 3.2. For example, the modified person- and household-level files exclude victimizations occurring outside of the United States. Because there are no dummy records on the modified person and household files, no exclusions are needed to remove dummy records from the analysis.

The modified person and household files contain the victimization counts needed to calculate victimization rates for the most common victimization characteristics analyzed using NCVS data. Examples 5A-5C demonstrate the calculation of personal and property victimizations rates that can be calculated directly from the modified person and household level files provided for a single year and Examples 6A-6B demonstrate these calculations for pooled year estimates. Example 5A includes calculations using both the `vargen` and `descript` procedures, while remaining examples use only the `vargen` procedure for simplicity. If an analyst wants to calculate a victimization rate for an incident-level characteristic that is not included on the modified files, preprocessing steps are needed to calculate victimization summaries from the incident-level file and move these summaries to the person file (for personal crimes) or the household file (for property crimes). Section 3.2 documents these steps. Examples 7A-7B demonstrate the calculation of
personal and property victimization rates for incident characteristics not included on the modified person and household files.

**Example 5: Rate of crime, single year**

**Example 5A** is an estimate of an overall personal victimization rate. **Example 5B** is an estimate of a property victimization rate with the inclusion of household-level domain characteristics. **Example 5C** is an estimate of a personal victimization rate, where the domain characteristics of interest are incident-level characteristics. All three estimates are computed with variables available on the modified person and household files.

**Example 5A - Rate of simple assaults, 2011**

**Year(s):** 2011  
**Crime Type(s):** simple assault (sast)  
**Domain(s):** n/a  
**Weight:** wgtpercy  
**Subpopulation:** 2011 (year=2011)  
**Calculated Directly from Adjusted Files?:** yes  

**First Approach: vargen procedure**

**Code:**

```
proc vargen data=adjper design=wr; *a;
 subpopn year=2011; *b;
 nest yr_grp v2117 v2118 / psulev=3; *c;
 weight wgtpercy; *d;
 xmean vrsast: adjinc_wt*sast*1000; *e;
 setenv colwidth=15 decwidth=5; *f;
 print estim seestim; *g;
run;
```

**Code Comment(s):**

- a) **Specifies input dataset and sample design**
- b) **Limits analysis to records of interest**
- c) **Specifies stratification and primary sampling units**
- d) **Specifies analysis weight**
- e) **Specifies name and formula for victimization rate**
- f) **Specify format of output**
- g) **Specify which estimates to print (victimization rate and standard error)**
DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With Replacement (WR) Design
Sample Weight: WGTPERCY
Stratification Variables(s): YR_GRP V2117
Primary Sampling Unit: V2118

Number of observations read : 708493    Weighted count :1270197175
Number of observations skipped : 106187
(WEIGHT variable nonpositive)
Observations in subpopulation : 143122    Weighted count :257542238
Denominator degrees of freedom :    160
Variance Estimation Method: Taylor Series (WR)
For VARGEN Testing: YEAR = 2011
by: Variable, SUDAAN Reserved Variable One.

Second Approach: descript procedure
Code:
```plaintext
data anset;
 set adjper;
 vrsast=adjinc_wt*sast*1000; *a;
run;

proc descript data=anset design=wr; *b;
 subpopn year=2011; *c;
 nest yr_grp v2117 v2118 / psulev=3; *d;
 weight wgtpercy; *e;
 var vrsast; *f;
 setenv colwidth=15 decwidth=5; *g;
 print mean semean; *h;
run;
```

Code Comment(s):
  a) Specifies victimization recode
  b) Specifies input dataset and sample design
  c) Limits analysis to records of interest
d) Specifies stratification and primary sampling units  
e) Specifies analysis weight  
f) Specifies analysis variable  
g) Specify format of output  
h) Specify which estimates to print (victimization rate and standard error)

Output:

<table>
<thead>
<tr>
<th>Variable</th>
<th>SUDAAN Reserved Variable One</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

| VRSAST    | Mean   | 15.36713 | 15.36713 |
|           | SE Mean | 1.17685  | 1.17685  |

DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With Replacement (WR) Design
Sample Weight: WGTPERCY  
Stratification Variables(s): YR_GRP V2117  
Primary Sampling Unit: V2118

Number of observations read :1902341  Weighted count :315512787
Number of observations skipped : 281776
(WEIGHT variable nonpositive)
Observations in subpopulation : 143122  Weighted count :257542238
Denominator degrees of freedom : 304

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: YEAR = 2011
by: Variable, SUDAAN Reserved Variable One.
Example 5B - Rate of household burglary by MSA status, household income, and family structure, 2011

Year(s): 2011
Crime Type(s): household burglary (hburg)
Domain(s): MSA status (msa); household income (hincome); family structure (fam_structure2)
Weight: wgthhcy
Subpopulation: 2011 (year=2011)
Calculated Directly from Adjusted Files?: yes

Code:
```
proc vargen data=adjhh design=wr;*a;
subpopn year=2011;
nest yr_grp v2117 v2118 / psulev=3;
weight wgthhcy;
class msa hincome fam_structure2 / nofreqs; *b;
tables msa hincome fam_structure2; *c;
xmean vrburg: adjinc_wt*hburg*1000;
setenv colwidth=15 decwidth=5;
print estim seestim;
run;
```

Code Comment(s):

a) Specifies input dataset and sample design
b) Specifies domains of interest
c) Specifies domains of interest

Output:

S U D A A N
Software for the Statistical Analysis of Correlated Data
Copyright Research Triangle Institute August 2012
Release 11.0.0

DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With Replacement (WR) Design
Sample Weight: WGTHHCY
Stratification Variables(s): YR_GRP V2117
Primary Sampling Unit: V2118

Number of observations read : 398238   Weighted count :608895975
Number of observations skipped : 129435
(WEIGHT variable nonpositive)
Observations in subpopulation : 79802   Weighted count :123038566
Denominator degrees of freedom :   160
Variance Estimation Method: Taylor Series (WR)
For VARGEN Testing: YEAR = 2011
by: Variable, HOUSEHOLD LOCALE.

<table>
<thead>
<tr>
<th>Variable</th>
<th>HOUSEHOLD LOCALE</th>
<th>Estimate</th>
<th>SE Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td>29.37159</td>
<td>1.59444</td>
</tr>
<tr>
<td>Urban</td>
<td></td>
<td>33.48701</td>
<td>2.51543</td>
</tr>
<tr>
<td>Suburban</td>
<td></td>
<td>25.44535</td>
<td>2.00861</td>
</tr>
<tr>
<td>Rural</td>
<td></td>
<td>33.01906</td>
<td>4.53445</td>
</tr>
</tbody>
</table>

Variance Estimation Method: Taylor Series (WR)
For VARGEN Testing: YEAR = 2011
by: Variable, HINCOME.

<table>
<thead>
<tr>
<th>Variable</th>
<th>HINCOME</th>
<th>Estimate</th>
<th>SE Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td>29.37159</td>
<td>1.59444</td>
</tr>
<tr>
<td>Less than $7,500</td>
<td></td>
<td>67.16497</td>
<td>14.00675</td>
</tr>
<tr>
<td>$7,500 to $14,999</td>
<td></td>
<td>58.84510</td>
<td>9.94479</td>
</tr>
<tr>
<td>$15,000 to $24,999</td>
<td></td>
<td>42.77625</td>
<td>5.55678</td>
</tr>
<tr>
<td>$25,000 to $34,999</td>
<td></td>
<td>33.34014</td>
<td>5.83093</td>
</tr>
<tr>
<td>$35,000 to $49,999</td>
<td></td>
<td>26.30117</td>
<td>2.68244</td>
</tr>
<tr>
<td>$50,000 to $74,999</td>
<td></td>
<td>21.50634</td>
<td>3.00622</td>
</tr>
<tr>
<td>$75,000 or more</td>
<td></td>
<td>12.28870</td>
<td>1.23588</td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td>29.54958</td>
<td>2.70272</td>
</tr>
</tbody>
</table>

Variance Estimation Method: Taylor Series (WR)
For VARGEN Testing: YEAR = 2011
by: Variable, Family Structure.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Family Structure</th>
<th>Estimate</th>
<th>SE Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td>29.37230</td>
<td>1.59447</td>
</tr>
<tr>
<td>Two or more adults - W/O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Mean</td>
<td>Std Dev</td>
<td></td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Children</td>
<td>24.20889</td>
<td>2.30429</td>
<td></td>
</tr>
<tr>
<td>Two or more adults - With Children</td>
<td>29.61002</td>
<td>2.38192</td>
<td></td>
</tr>
<tr>
<td>One Male Adult - W/O Children</td>
<td>30.99701</td>
<td>2.92235</td>
<td></td>
</tr>
<tr>
<td>One Male Adult - With Children</td>
<td>46.66971</td>
<td>14.31937</td>
<td></td>
</tr>
<tr>
<td>One Female Adult - W/O Children</td>
<td>30.10567</td>
<td>4.79787</td>
<td></td>
</tr>
<tr>
<td>One Female Adult - With Children</td>
<td>61.96275</td>
<td>8.31509</td>
<td></td>
</tr>
</tbody>
</table>
Example 5C - Rate of violent crime by weapon involvement, injury, and victim-offender relationship, 2011

Year(s): 2011  
Crime Type(s): violent victimizations (rsa+rob+aast+sast)  
Domain(s): weapon involvement (wpnuse); injury (inj), victim-offender relationship (rel)  
Weight: wgtpercy  
Subpopulation: 2011 (year=2011)  
Calculated Directly from Adjusted Files?: yes

Code:
```plaintext
data example5c_per;
 set adjper;

 *aggregate violent crimes into a single measure for each outcome of interest;
 viol_weap1=(rsa_wpnuse1+rob_wpnuse1+aast_wpnuse1+sast_wpnuse1);
 viol_weap2=(rsa_wpnuse2+rob_wpnuse2+aast_wpnuse2+sast_wpnuse2);
 viol_weap3=(rsa_wpnuse3+rob_wpnuse3+aast_wpnuse3+sast_wpnuse3);
 viol_inj1=(rsa_inj1+rob_inj1+aast_inj1+sast_inj1);
 viol_inj2=(rsa_inj2+rob_inj2+aast_inj2+sast_inj2);
 viol_inj3=(rsa_inj3+rob_inj3+aast_inj3+sast_inj3);
 viol_inj4=(rsa_inj4+rob_inj4+aast_inj4+sast_inj4);
 viol_rel1=(rsa_rel1+rob_rel1+aast_rel1+sast_rel1);
 viol_rel2=(rsa_rel2+rob_rel2+aast_rel2+sast_rel2);
 viol_rel3=(rsa_rel3+rob_rel3+aast_rel3+sast_rel3);
 viol_rel4=(rsa_rel4+rob_rel4+aast_rel4+sast_rel4);
 viol_rel5=(rsa_rel5+rob_rel5+aast_rel5+sast_rel5);
 viol_rel6=(rsa_rel6+rob_rel6+aast_rel6+sast_rel6);
run;
```
**proc vargen** data=example5c_per design=wr;
subpopn year=2011;
nest yr_grp v2117 v2118 / psulev=3;
weight wgtpercy;
xmean vrweap1: adjinc_wt*viol_weap1*1000; *a;
xmean vrweap2: adjinc_wt*viol_weap2*1000; *b;
xmean vrweap3: adjinc_wt*viol_weap3*1000; *c;

xmean vrinj1: adjinc_wt*viol_inj1*1000; *d;
xmean vrinj2: adjinc_wt*viol_inj2*1000; *e;
xmean vrinj3: adjinc_wt*viol_inj3*1000; *f;
xmean vrinj4: adjinc_wt*viol_inj4*1000; *g;

xmean vrrel1: adjinc_wt*viol_rell*1000; *h;
xmean vrrel2: adjinc_wt*viol_rel2*1000; *i;
xmean vrrel3: adjinc_wt*viol_rel3*1000; *j;
xmean vrrel4: adjinc_wt*viol_rel4*1000; *k;
xmean vrrel5: adjinc_wt*viol_rel5*1000; *l;
xmean vrrel6: adjinc_wt*viol_rel6*1000; *m;

setenv colwidth=15 decwidth=5;
print estim seestim;
**run;**

**Code Comment(s):**
- a) Yes, offender had a weapon
- b) No, offender did not have a weapon
- c) Do not know if offender had a weapon
- d) No injury
- e) Serious injury
- f) Minor injury
- g) Rape without other injuries
- h) Intimates
- i) Other relatives
- j) well known/casual acquaintances
- k) Strangers
- l) Do not know relationship
- m) Do not know number of offenders
Output:

S U D A A N
Software for the Statistical Analysis of Correlated Data
Copyright Research Triangle Institute August 2012
Release 11.0.0

DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With Replacement (WR) Design
Sample Weight: WGTPERCY
Stratification Variables(s): YR_GRP V2117
Primary Sampling Unit: V2118

Number of observations read : 708493    Weighted count :1270197175
Number of observations skipped : 106187
(WEIGHT variable nonpositive)
Observations in subpopulation : 143122    Weighted count :257542238
Denominator degrees of freedom :    160

Variance Estimation Method: Taylor Series (WR)
For VARGEN Testing: YEAR = 2011
by: Variable, SUDAAN Reserved Variable One.

---------------------------------------------------------------------
Variable    SUDAAN Reserved Variable One           Estimate       SE Estimate
---------------------------------------------------------------------
VRWEAP1     Total                       4.63777           0.34818
            1                          4.63777           0.34818
---------------------------------------------------------------------

Variance Estimation Method: Taylor Series (WR)
For VARGEN Testing: YEAR = 2011
by: Variable, SUDAAN Reserved Variable One.

---------------------------------------------------------------------
Variable    SUDAAN Reserved Variable One           Estimate       SE Estimate
---------------------------------------------------------------------
VRWEAP2     Total                      16.45241           1.17620
            1                          16.45241           1.17620
---------------------------------------------------------------------

Variance Estimation Method: Taylor Series (WR)
For VARGEN Testing: YEAR = 2011
by: Variable, SUDAAN Reserved Variable One.

---------------------------------------------------------------------
Variable    SUDAAN Reserved Variable One           Estimate       SE Estimate
---------------------------------------------------------------------
VRWEAP3     Total                       1.47902           0.30060
---------------------------------------------------------------------
<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>SE Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRINJ1</td>
<td>16.93653</td>
<td>1.22551</td>
</tr>
<tr>
<td>VRINJ2</td>
<td>1.12991</td>
<td>0.19134</td>
</tr>
<tr>
<td>VRINJ3</td>
<td>4.08535</td>
<td>0.38482</td>
</tr>
<tr>
<td>VRINJ4</td>
<td>0.41741</td>
<td>0.09706</td>
</tr>
</tbody>
</table>

Variance Estimation Method: Taylor Series (WR)
For VARGEN Testing: YEAR = 2011
by: Variable, SUDAAN Reserved Variable One.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>SE Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRREL1</td>
<td>3.30343</td>
<td>0.49965</td>
</tr>
<tr>
<td>VRREL2</td>
<td>1.95748</td>
<td>0.35481</td>
</tr>
<tr>
<td>VRREL3</td>
<td>6.91000</td>
<td>0.77793</td>
</tr>
<tr>
<td>VRREL4</td>
<td>8.33380</td>
<td>0.68670</td>
</tr>
<tr>
<td>VRREL5</td>
<td>0.93560</td>
<td>0.12568</td>
</tr>
</tbody>
</table>

Variance Estimation Method: Taylor Series (WR)
For VARGEN Testing: YEAR = 2011
by: Variable, SUDAAN Reserved Variable One.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>SE Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1.12888</td>
<td>0.21522</td>
</tr>
<tr>
<td>1</td>
<td>1.12888</td>
<td>0.21522</td>
</tr>
</tbody>
</table>
Example 6: Rate of crime, aggregated years

Example 6A is an estimate of a personal victimization rate with person-level domain characteristics of interest. Example 6B is an estimate of a property victimization rate with the inclusion of a household-level domain characteristic. Both estimates are computed with variables available on the modified person and household files.

Example 6A - Rate of violent crimes reported to police by sex, age category, race/ethnicity, and marital status, 2009–2011

Year(s): 2009-2011
Crime Type(s): violent victimizations reported to police ($rsa_rpt1+rob_rpt1+aast_rpt1+sast_rpt1$)
Domain(s): sex ($sex$); age category ($agecat$); race/ethnicity ($race_eth$); marital status ($marital$)
Weight: $wgtpercy$
Subpopulation: 2009-2011 ((2009 <= year) and (year <=2011))
Calculated Directly from Adjusted Files?: yes

Code:

data example6a_per;
set adjper;
    *aggregate violent crimes into a single measure for outcome of interest;
viol_rpt1=(rsa_rpt1+rob_rpt1+aast_rpt1+sast_rpt1);
run;

proc vargen data=example6a_per design=wr;
    subpopn (2009 <= year) and (year <=2011);
    nest yr_grp v2117 v2118 / psulev=3;
    weight wgtpercy;
    xmean xrvrviolrpt: adjinc_wt*viol_rpt1*1000;
    class sex agecat race_eth marital / nofreqs;
    tables sex agecat race_eth marital;
    setenv colwidth=15 decwidth=5;
    print estim seestim;
    output / filename=ex6a replace estimfmt=f10.6 seestimfmt=f10.6;
run;
Output:

SUD A A N
Software for the Statistical Analysis of Correlated Data
Copyright Research Triangle Institute August 2012
Release 11.0.0

DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With Replacement (WR) Design

Sample Weight: WGTPERCY
Stratification Variables(s): YR_GRP V2117
Primary Sampling Unit: V2118

Number of observations read : 708493    Weighted count :1270197175
Number of observations skipped : 106187
(WEIGHT variable nonpositive)
Observations in subpopulation : 427018    Weighted count :767609782
Denominator degrees of freedom : 160

Variance Estimation Method: Taylor Series (WR)
For VARGEN Testing: ( 2009 <= YEAR ) AND ( YEAR <= 2011 )
by: Variable, SEX.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>SE Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>10.25480</td>
<td>0.49316</td>
</tr>
<tr>
<td>Male</td>
<td>9.68295</td>
<td>0.53535</td>
</tr>
<tr>
<td>Female</td>
<td>10.80133</td>
<td>0.75009</td>
</tr>
</tbody>
</table>

Variance Estimation Method: Taylor Series (WR)
For VARGEN Testing: ( 2009 <= YEAR ) AND ( YEAR <= 2011 )
by: Variable, AGECAT.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>SE Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGECAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>10.25480</td>
<td>0.49316</td>
</tr>
<tr>
<td>12 to 14</td>
<td>10.14255</td>
<td>1.52829</td>
</tr>
<tr>
<td>15 to 17</td>
<td>13.04128</td>
<td>1.60744</td>
</tr>
<tr>
<td>18 to 20</td>
<td>22.57700</td>
<td>4.63942</td>
</tr>
<tr>
<td>21 to 24</td>
<td>16.93357</td>
<td>1.89590</td>
</tr>
<tr>
<td>25 to 34</td>
<td>14.05792</td>
<td>1.17349</td>
</tr>
<tr>
<td>35 to 49</td>
<td>11.41399</td>
<td>0.89398</td>
</tr>
<tr>
<td>50 to 64</td>
<td>6.59324</td>
<td>0.58231</td>
</tr>
<tr>
<td>65 or older</td>
<td>1.90274</td>
<td>0.37196</td>
</tr>
</tbody>
</table>

Variance Estimation Method: Taylor Series (WR)
For VARGEN Testing: ( 2009 <= YEAR ) AND ( YEAR <= 2011 )
by: Variable, RACE_ETH.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>SE Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>RACE_ETH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>10.25480</td>
<td>0.49316</td>
</tr>
<tr>
<td>Non-Hispanic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>Estimate</td>
<td>SE Estimate</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>White</td>
<td>9.59106</td>
<td>0.55619</td>
</tr>
<tr>
<td>Non-Hispanic Black</td>
<td>16.32449</td>
<td>2.15038</td>
</tr>
<tr>
<td>Hispanic</td>
<td>9.11081</td>
<td>0.90575</td>
</tr>
<tr>
<td>Non-Hispanic Other</td>
<td>6.21558</td>
<td>1.43177</td>
</tr>
<tr>
<td>Non-Hispanic More than One Race</td>
<td>20.78554</td>
<td>3.67528</td>
</tr>
</tbody>
</table>

Variance Estimation Method: Taylor Series (WR)
For VARGEN Testing: (2009 <= YEAR) AND (YEAR <= 2011)
by: Variable, MARITAL.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>SE Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRVIOLRPT Total</td>
<td>10.28470</td>
<td>0.49491</td>
</tr>
<tr>
<td>Never Married</td>
<td>15.24882</td>
<td>1.03449</td>
</tr>
<tr>
<td>Married</td>
<td>5.03580</td>
<td>0.38311</td>
</tr>
<tr>
<td>Widowed</td>
<td>3.73865</td>
<td>0.91618</td>
</tr>
<tr>
<td>Divorced</td>
<td>18.37270</td>
<td>1.86821</td>
</tr>
<tr>
<td>Separated</td>
<td>38.60338</td>
<td>5.88557</td>
</tr>
</tbody>
</table>
Example 6B - Rate of property crimes reported to police by household income, 2009–2011

Year(s): 2009-2011
Crime Type(s): property crimes reported to police (hburg_rpt1+tft_rpt1+mvtft_rpt1)
Domain(s): household income (hincome)
Weight: wgthhcya
Subpopulation: 2009-2011 ((2009 <= year) and (year <= 2011))
Calculated Directly from Adjusted Files?: yes

Code:
```
data example6b_hh;
 set adjhh;
 *aggregate property crimes into a single measure for outcome of interest;
 prop_rpt1=(hburg_rpt1+tft_rpt1+mvtft_rpt1);
run;
```

```
proc vargen data=example6b_hh design=wr;
 subpopn (2009 <= year) and (year <= 2011);
 nest yr_grp v2117 v2118 / psulev=3;
 weight wgthhcya;
 class hincome / nofreqs;
 tables hincome;
 xmean vrproprpt: adjinc_wt*prop_rpt1*1000;
 setenv colwidth=15 decwidth=5;
 print estim seestim;
run;
```

Output:

SUDAAN
Software for the Statistical Analysis of Correlated Data
Copyright Research Triangle Institute August 2012
Release 11.0.0

DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With Replacement (WR) Design
  Sample Weight: WGTHHCYA
  Stratification Variables(s): YR_GRP V2117
  Primary Sampling Unit: V2118

Number of observations read : 398238    Weighted count :608895975
Number of observations skipped : 129435
(WEIGHT variable nonpositive)
Observations in subpopulation : 239205    Weighted count :368251383
Denominator degrees of freedom :   160

Variance Estimation Method: Taylor Series (WR)
For VARGEN Testing: ( 2009 <= YEAR ) AND ( YEAR <= 2011 )
by: Variable, HINCOME.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>SE Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>50.41720</td>
<td>0.98907</td>
</tr>
<tr>
<td>Less than $7,500</td>
<td>64.05274</td>
<td>4.36642</td>
</tr>
<tr>
<td>$7,500 to $14,999</td>
<td>60.84082</td>
<td>3.67851</td>
</tr>
<tr>
<td>$15,000 to $24,999</td>
<td>54.83199</td>
<td>2.79486</td>
</tr>
<tr>
<td>$25,000 to $34,999</td>
<td>54.83207</td>
<td>3.22249</td>
</tr>
<tr>
<td>$35,000 to $49,999</td>
<td>55.92131</td>
<td>3.03029</td>
</tr>
<tr>
<td>$50,000 to $74,999</td>
<td>49.01113</td>
<td>2.02956</td>
</tr>
<tr>
<td>$75,000 or more</td>
<td>49.94612</td>
<td>1.49055</td>
</tr>
<tr>
<td>Unknown</td>
<td>43.61699</td>
<td>1.54434</td>
</tr>
</tbody>
</table>
Example 7: Computing victimization rates based on incident characteristics not included on the provided file

The two examples below estimate personal and property victimization rates for incident-level characteristics not contained on the modified person and household files, and thus require the pre-processing steps outlined in Section 3.2. SAS is used to calculate victimization summaries from the incident-level file and merge incident summaries onto the household and person files. Victimization rates are then calculated from the modified person-level file (for personal crimes) or the modified household-level file (for property crimes). Example 7A is an estimate of a personal victimization rate and Example 7B is an estimate of a property victimization rate. Example 7A is for a single year, and Example 7B is for aggregated years.

Example 7A - Rate of violent crimes by location of crime, 2011

Year(s): 2011
Crime Type(s): violent victimizations by location of crime (violent_home; violent_other)
Domain(s): n/a
Weight: wgtpercy
Subpopulation: 2011 (year=2011)
Calculated Directly from Adjusted Files?: no

Code:
*step1: identify records with victimization characteristic(s) of interest on the modified incident-level file ;

data example7a_inc;
set adjincident;
vcrime=(newoff in (1 2 3 4)); *a;

*identify location of crime;
if v4024 in (1 2 3 4) then place_inc=1; *b;
else if v4024 in (5 6 7) then place_inc=2; *c;
else if v4024 in (8 9 10 11) then place_inc=3; *d;
else if v4024 in (12 13 14 24 25 26 27) then place_inc=4; *e;
else if v4024 in (15 16 17) then place_inc=5; *f;
else if v4024 in (18 19) then place_inc=6; *g;
else if v4024 in (20 21 22) then place_inc=7; *h;
else if v4024 in (23) then place_inc=8; *i;
else v4024=. then place_inc=9; *j;

*collapse location of crime;
if place_inc in (1 2) then place=1; *k;
else place=2; *l;
*create binary classifications for each location, excluding
dummy records and crimes that occurred outside of the united
states;
vviolent_home=(vcrime=1 and place=1 and exclude_outus=0 and
dummy=0);
vviolent_other=(vcrime=1 and place=2 and exclude_outus=0 and
dummy=0);
run;

**Code Comment(s):**

a) Identify violent crimes  
b) Respondent’s home  
c) Near respondents home  
d) Friend’s home  
e) Commercial  
f) Parking lot-garage  
g) School  
h) Open areas, on street or public transportation  
i) Other  
j) Missing  
k) Respondent’s home/near respondent’s home  
l) Other location

*step2: create victimization summary file ;

**proc sort data=example7a_inc(keep=yearq idper serieswgt**

by yearq idhh idper;

**run;**

*calculate the number of victimizations of each type by person
and reporting period ;

**proc means data=example7a_inc noprint;**

by yearq idper;
weight serieswgt;
var violent_home violent_other;
output out=vviolent_place_sums(drop=_type_ _freq_)**

sum=;

**run;**

*step3: merge victimization summary file onto the person-level
file ;

**proc sort data=adjper; by yearq idper; run;**
data example7a_per;
merge adjper(in=a)
   violent_place_sums(in=b);
by yearq idper;
if a;
if violent_home=. then violent_home=0; *a;
if violent_other=. then violent_other=0;
run;

Code Comment(s):
   a) The two incident count variables are missing for persons not
      included on the victimization summary file, so they are set to ‘0’
      (no victimizations of this type)

*calculate victimization rates ;
proc sort data=example7a_per; by yr_grp v2117 v2118; run;

proc vargen data=example7a_per design=wr;
subpopn year=2011;
nest yr_grp v2117 v2118 / psulev=3;
weight wgtpercy;
xmean vrviolrhome: adjinc_wt*violent_home*1000; *a;
xmean vrviolother: adjinc_wt*violent_other*1000;

setenv colwidth=15 decwidth=5;
print estim seestim;
run;

Code Comment(s):
   a) The final step outlined in section 3.2 was to calculate the
      victimization adjustment factor, but it is already contained on the
      modified person file.

Output:

S U D A A N
Software for the Statistical Analysis of Correlated Data
Copyright      Research Triangle Institute       August 2012
Release 11.0.0

DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With
Replacement (WR) Design
  Sample Weight: WGTPERCY
  Stratification Variables(s): YR_GRP V2117
  Primary Sampling Unit: V2118

Number of observations read : 708493   Weighted count :1270197175
Number of observations skipped : 106187  (WEIGHT variable nonpositive)
Observations in subpopulation : 143122   Weighted count :257542238
Denominator degrees of freedom : 160

Variance Estimation Method: Taylor Series (WR)
For VARGEN Testing: YEAR = 2011
by: Variable, SUDAAN Reserved Variable One.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>SE Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRVIOLRHOME</td>
<td>8.33448</td>
<td>0.63137</td>
</tr>
<tr>
<td>Total</td>
<td>8.33448</td>
<td>0.63137</td>
</tr>
<tr>
<td>1</td>
<td>8.33448</td>
<td>0.63137</td>
</tr>
</tbody>
</table>

Variance Estimation Method: Taylor Series (WR)
For VARGEN Testing: YEAR = 2011
by: Variable, SUDAAN Reserved Variable One.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>SE Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRVIOLOTHER</td>
<td>14.23472</td>
<td>1.15399</td>
</tr>
<tr>
<td>Total</td>
<td>14.23472</td>
<td>1.15399</td>
</tr>
<tr>
<td>1</td>
<td>14.23472</td>
<td>1.15399</td>
</tr>
</tbody>
</table>
**Example 7B - Rate of property crimes by time of day, 2009-2011**

**Year(s):** 2009-2011  
**Crime Type(s):** property crimes by time of day (*property_day*; *property_night*; *property_missing*)  
**Domain(s):** n/a  
**Weight:** wgthhcy  
**Subpopulation:** 2009-2011 ((2009 <= year) and (year <= 2011))  
**Calculated Directly from Adjusted Files?:** no

*step1: identify records with victimization characteristic(s) of interest on the modified incident-level file;*

```plaintext
data example7b_inc;
set adjincident;
 pprime=(newoff in (6 7 8)); *a;
 *identify time of incident;
 if v4021b in (1 2 3 4) then time_day=1; *b;
 else if v4021b in (5 6 7 8) then time_day=2; *c;
 else if v4021b in (9 98) then time_day=3; *d;
 *create binary classifications for each time, excluding dummy records and crimes that occurred outside of the united states;
 property_day=(pprime=1 and time_day=1 and exclude_outus=0 and dummy=0);
 property_night=(pprime=1 and time_day=2 and exclude_outus=0 and dummy=0);
 property_missing=(pprime=1 and time_day=3 and exclude_outus=0 and dummy=0);
run;```

Code Comment(s):

a) identify property crimes
b) day
c) night
d) missing

step2: create victimization summary file;

```plaintext
proc sort data=example7b_inc(keep=yearq idhh serieswgt  
    property_day property_night property_missing);  
  by yearq idhh;  
run;```
*calculate the number of victimizations of each type by household and reporting period ;
proc means data=example7b_inc noprint;
  by yearq idhh;
  weight serieswgt;
  var property_day property_night property_missing;
  output out=property_time_sums(drop=_type_ _freq_)
       sum=;
run;

*step3: merge victimization summary file onto the HH-level file ;
proc sort data=adjhh; by yearq idhh; run;
data example7b_hh;
merge adjhh(in=a)
   property_time_sums(in=b);
  by yearq idhh;
  if a;
  if property_day=. then property_day=0; *a;
  if property_night=. then property_night=0;
  if property_missing=. then property_missing=0;
run;

Code Comment(s):
  a) The three incident count variables are missing for households not included on the victimization summary file, so they are set to ‘0’ (no victimizations of this type)

*calculate victimization rates ;
proc sort data=example7b_hh; by yr_grp v2117 v2118; run;

proc vargen data=example7b_hh design=wr;
  subpopn (2009 <= year) and (year <=2011);
  nest yr_grp v2117 v2118 / psulev=3;
  weight wgthhc;
  xmean vrpropday: adjinc_wt*property_day*1000; *a;
  xmean vrpropnight: adjinc_wt*property_night*1000;
  xmean vrpropmiss: adjinc_wt*property_missing*1000;
setenv colwidth=15 decwidth=5;
  print estim seestim;
run;

Code Comment(s):
  a) The final step outlined in section 3.2 was to calculate the victimization adjustment factor, but it is already contained on the modified person file.
### Output:

**SUDAAN**

Software for the Statistical Analysis of Correlated Data  
Copyright Research Triangle Institute August 2012  
Release 11.0.0

DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With Replacement (WR) Design  
Sample Weight: WGTHHCY  
Stratification Variables(s): YR_GRP V2117  
Primary Sampling Unit: V2118

Number of observations read : 398238  
Weighted count :608895975  
Number of observations skipped : 129435  
(WEIGHT variable nonpositive)  
Observations in subpopulation : 239205  
Weighted count :368251383  
Denominator degrees of freedom : 160

Variance Estimation Method: Taylor Series (WR)  
For VARGEN Testing: ( 2009 <= YEAR ) AND ( YEAR <= 2011 )  
by: Variable, SUDAAN Reserved Variable One.

<table>
<thead>
<tr>
<th>Variable</th>
<th>SUDAAN Reserved Variable One</th>
<th>Estimate</th>
<th>SE Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRPROPDAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>51.62050</td>
<td>1.22708</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>51.62050</td>
<td>1.22708</td>
<td></td>
</tr>
</tbody>
</table>

Variance Estimation Method: Taylor Series (WR)  
For VARGEN Testing: ( 2009 <= YEAR ) AND ( YEAR <= 2011 )  
by: Variable, SUDAAN Reserved Variable One.

<table>
<thead>
<tr>
<th>Variable</th>
<th>SUDAAN Reserved Variable One</th>
<th>Estimate</th>
<th>SE Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRPROPNIGHT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>56.47746</td>
<td>1.33153</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>56.47746</td>
<td>1.33153</td>
<td></td>
</tr>
</tbody>
</table>

Variance Estimation Method: Taylor Series (WR)  
For VARGEN Testing: ( 2009 <= YEAR ) AND ( YEAR <= 2011 )  
by: Variable, SUDAAN Reserved Variable One.

<table>
<thead>
<tr>
<th>Variable</th>
<th>SUDAAN Reserved Variable One</th>
<th>Estimate</th>
<th>SE Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRPROPMISS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24.14251</td>
<td>0.80690</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>24.14251</td>
<td>0.80690</td>
<td></td>
</tr>
</tbody>
</table>
D.4 Identifying Low Quality Estimates

This section demonstrates how to implement the recommendations for identifying low quality estimates and the rounding rules discussed in Section 4 of the user’s guide. Three types of data are needed to identify and flag low quality estimates, regardless of the estimate type: the estimate, the standard error of the estimate, and the unweighted sample size of the estimate.

Because Examples 1-7 provided details for obtaining estimates and standard errors, the examples in this section will focus primarily on calculating the percent relative standard error (RSE), calculating unweighted sample sizes, identifying estimates that should be flagged as unreliable, and verifying that estimates rounding to zero are not presented.

Unweighted sample sizes should take into account the series adjustment. For example, a series victimization with a series count of seven would count as seven victimizations in the unweighted sample size, while a non-series victimization would only count as one. This series adjustment is already incorporated in the victimization counts on the modified person and household-level files, so sample sizes for victimization rates are obtained by taking unweighted sums of victimization counts with the specified characteristic(s) of interest. However, for victimization totals and proportions, the series count must be included in the calculation of the sample size, as demonstrated in the examples below. Example 8A demonstrates implementation of flagging and rounding rules for victimization totals, Example 8B for victimization proportions, and Example 8C for victimization rates.

Example 8A - Total number of personal thefts by sex and race/ethnicity, 2011

Year(s): 2011
Crime Type: personal thefts (ptft)
Domain(s): sex (sex) and race/ethnicity (race_eth)
Weight: newwgt
Subpopulation: within the United States (exclude_outUS=0); non-dummy records (dummy=0); 2011 (year=2011)
Code:

*calculate estimates and standard errors;

proc descript data=adjincident design=wr;
   subpopn exclude_outus=0 and dummy=0 and year=2011;
   nest yr_grp v2117 v2118 / psulev=3;
   weight newwgt;
   var ptft;
   class sex race_eth / nofreqs;
   tables sex race_eth;
   print total setotal;
run;

*calculate sample sizes;

proc descript data=adjincident design=wr;
   subpopn exclude_outus=0 and dummy=0 and year=2011;
   nest yr_grp v2117 v2118 / psulev=3;
   weight serieswgt; *a;
   var ptft;
   class sex race_eth / nofreqs;
   tables sex race_eth;
   print total;
run;

Code Comment(s):

   a) Weight by the series weight to obtain the series-adjusted count of
      victimizations

Output:

S U D A A N
Software for the Statistical Analysis of Correlated Data
Copyright      Research Triangle Institute       August 2012
Release 11.0.0

DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With
Replacement (WR) Design
   Sample Weight: NEWWGT
   Stratification Variables(s): YR_GRP V2117
   Primary Sampling Unit: V2118
Number of observations read    :  37853    Weighted count :115824878
Observations in subpopulation  :   7255    Weighted count : 23041441
Denominator degrees of freedom :    160

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND YEAR = 2011
by: Variable, SEX.

-----------------------------------------------------------------------------
### Variable Summary

<table>
<thead>
<tr>
<th>Variable</th>
<th>SEX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>PTFT</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>SE Total</td>
</tr>
</tbody>
</table>

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND YEAR = 2011
by: Variable, RACE_ETH.

<table>
<thead>
<tr>
<th>Variable</th>
<th>RACE_ETH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>PTFT</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>SE Total</td>
</tr>
</tbody>
</table>

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND YEAR = 2011
by: Variable, SEX.
<table>
<thead>
<tr>
<th>Variable</th>
<th>SEX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>PTFT</td>
<td>51.00</td>
</tr>
</tbody>
</table>

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND YEAR = 2011
by: Variable, RACE_ETH.

<table>
<thead>
<tr>
<th>Variable</th>
<th>RACE_ETH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>PTFT</td>
<td>51.00</td>
</tr>
</tbody>
</table>

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND YEAR = 2011
by: Variable, RACE_ETH.

<table>
<thead>
<tr>
<th>Variable</th>
<th>RACE_ETH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>PTFT</td>
<td>6.00</td>
</tr>
</tbody>
</table>

**Identifying Unreliable Estimates:**

As outlined in Section 4, it is recommended that estimated totals meeting either of the following criteria be identified as unreliable. In addition, any estimate rounding to zero should not be displayed.

- RSE > 30%
- Count sample size ≤ 10

The percent relative standard error of an estimated total is calculated as:

\[
\% RSE(Total) = \frac{SE(Total)}{Total} \times 100
\]

Estimated totals, standard errors, and unweighted sample sizes from the output above are included in Table D-1 (in the “Total,” “SE(Total),” and “n” columns, respectively). Percent RSEs are calculated based on the formula above. Based on the recommendations, five of the eight
estimates are flagged as unreliable. The estimate for males is flagged because the percent RSE is greater than 30 percent, while the other four estimates are flagged both because their RSEs exceed 30 percent and because their unweighted sample sizes are less than or equal to 10. All estimates can be displayed because no estimates round to zero.

Table D-1. Identifying Low Quality Victimization Totals

<table>
<thead>
<tr>
<th>Domain</th>
<th>Total</th>
<th>SE(Total)</th>
<th>n</th>
<th>%RSE (Total)</th>
<th>Flag as Unreliable?</th>
<th>Rounds to Zero?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>165770.15</td>
<td>24276.55</td>
<td>51</td>
<td>14.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>53583.48</td>
<td>18913.90</td>
<td>16</td>
<td>35.30</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>112186.67</td>
<td>19313.73</td>
<td>35</td>
<td>17.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>83955.56</td>
<td>21478.97</td>
<td>24</td>
<td>25.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic Black</td>
<td>29506.98</td>
<td>10989.44</td>
<td>9</td>
<td>37.24</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>30286.66</td>
<td>10488.60</td>
<td>9</td>
<td>34.63</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic Other</td>
<td>13519.07</td>
<td>5943.55</td>
<td>6</td>
<td>43.96</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic More than One Race</td>
<td>8501.87</td>
<td>5281.78</td>
<td>3</td>
<td>62.12</td>
<td>√</td>
<td></td>
</tr>
</tbody>
</table>

Example 8B – Distribution of motor vehicle theft in the Northeast Census Region by report status, 2011

Year(s): 2011
Domain(s): Northeast Census Region (region=1); motor vehicle theft (mvtft=1)
Covariates: report status (notify)
Weight: newwgt
Subpopulation: within the United States (exclude_outUS=0); non-dummy records (dummy=0); 2011 (year=2011); Northeast Census Region (region=1); motor vehicle theft (mvtft=1)

Code:
*calculate estimates and standard errors;
proc crosstab data=adjincident design=wr;
   subpopn exclude_outus=0 and dummy=0 and year=2011 and region=1 and mvtft=1;
   nest yr_grp v2117 v2118 / psulev=3;
   weight newwgt;
   class notify / nolabels;
   tables notify;
   print rowper serow;
run;

*calculate sample sizes;
proc crosstab data=adjincident design=wr;
subpopn exclude_outus=0 and dummy=0 and year=2011 and region=1 and mvtft=1;
nest yr_grp v2117 v2118 / psulev=3;
weight serieswgt; *a;
class notify /nofreqs;
tables notify;
print wsum;
run;

Code Comment(s):
  b) **Weight by the series weight to obtain the series-adjusted count of victimizations.** Because flagging rules are based on the denominator sample size, only the overall sample size is needed (not estimates by report status).

Output:

<table>
<thead>
<tr>
<th>NOTIFY</th>
<th></th>
<th>REPORTED</th>
<th></th>
<th>NOT REPORTED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DESCRIPTIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>to police</td>
<td>not to police</td>
</tr>
<tr>
<td></td>
<td>Row Percent</td>
<td>100.00</td>
<td>92.60</td>
<td>7.40</td>
</tr>
<tr>
<td></td>
<td>SE Row Percent</td>
<td>0.00</td>
<td>5.40</td>
<td>5.40</td>
</tr>
</tbody>
</table>

DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With Replacement (WR) Design
Sample Weight: NEWWGT
Stratification Variables(s): YR_GRP V2117
Primary Sampling Unit: V2118

Number of observations read : 37853  Weighted count :115824878
Observations in subpopulation : 19  Weighted count : 57944
Denominator degrees of freedom : 160

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND YEAR = 2011 AND MVTFT = 1 AND REGION = 1
by: NOTIFY.
Observations in subpopulation: 19  Weighted count: 19
Denominator degrees of freedom: 160

Variance Estimation Method: Taylor Series (WR)
For Subpopulation: EXCLUDE_OUTUS = 0 AND DUMMY = 0 AND YEAR = 2011 AND MVTFT = 1 AND REGION = 1
by: NOTIFY.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NOTIFY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weighted Size</td>
<td>19</td>
<td>17</td>
</tr>
</tbody>
</table>

**Identifying Unreliable Estimates:**

As outlined in [Section 4](#), it is recommended that victimization percentages (P) meeting either of the following criteria be flagged as unreliable. In addition, any estimate rounding to zero should not be displayed.

- RSE > 30%, where
  - If the percentage is \( \leq 50\% \), use the RSE of \( \log(P) \)
  - If the percentage is \( > 50\% \), use the RSE of \( \log(100-P) \); or
- Denominator sample size \( \leq 10 \)

The percent relative standard errors of the log of the percentages (P) and (1-P) are calculated as:

\[
\% RSE(\log(P)) = \frac{SE(P)}{P \cdot \text{abs}(\log\left(\frac{P}{100}\right))} \cdot 100
\]

\[
\% RSE(\log(100-P)) = \frac{SE(P)}{(100-P) \cdot \text{abs}(\log\left(1 - \frac{P}{100}\right))} \cdot 100
\]

Estimated percentages, standard errors, and the unweighted denominator sample size from the output above are included in Table D-2 (in the “P,” “SE(P),” and “n (denom)” columns, respectively). Percent RSEs are calculated based on the formulas above. Based on these recommendations, none of the estimates are flagged as unreliable. The denominator sample size is
19, which is greater than the recommended threshold of 10. The percent RSEs for the reported and not reported estimates are 28.03, which are below the 30 percent threshold. However, because no respondents reported that they did not know whether or not the motor vehicle theft was reported to the police, the estimated percent is 0. This estimate should not be presented because it rounds to zero.

Table D-2. Identifying Low Quality Victimization Percentages

<table>
<thead>
<tr>
<th>Estimate</th>
<th>P</th>
<th>SE(P)</th>
<th>n (denom)</th>
<th>%RSE(P) OR %RSE(100-P)</th>
<th>Flag as Unreliable?</th>
<th>Rounds to Zero?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reported to Police</td>
<td>92.60</td>
<td>5.40</td>
<td>19</td>
<td>28.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Reported to Police</td>
<td>7.40</td>
<td>5.40</td>
<td>19</td>
<td>28.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do Not Know</td>
<td>0.00</td>
<td>-</td>
<td>19</td>
<td>-</td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>
Example 8C – Rate of rape/sexual assault by sex, 2011

Year(s): 2011
Crime Type(s): rape/sexual assault (rsa)
Domain(s): sex (sex)
Weight: wgtpercy
Subpopulation: 2011 (year=2011)
Calculated Directly from Adjusted Files?: yes

Code:
*calculate estimates and standard errors;
proc vargen data=adjper design=wr;
   subpopn year=2011;
   nest yr_grp v2117 v2118 / psulev=3;
   weight wgtpercy;
   xmean vrrsa: adjinc_wt*rsa*1000;
   class sex /nofreqs;
   tables sex;
   setenv colwidth=15 decwidth=5;
   print estim seestim;
run;

*calculate sample sizes;
proc vargen data=adjper design=wr;
   subpopn year=2011;
   nest yr_grp v2117 v2118 / psulev=3;
   weight _one_; *a;
   xsum nrsa: rsa;
   class sex /nofreqs;
   tables sex;
   setenv colwidth=15 decwidth=5;
   print estim;
run;

Code Comment(s):
  c) Unweighted because the victimization count RSA already includes the series adjustment

Output:

S U D A A N
Software for the Statistical Analysis of Correlated Data
Copyright       Research Triangle Institute       August 2012
Release 11.0.0

DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With Replacement (WR) Design
Sample Weight: WGTPERCY
Stratification Variables(s): YR_GRP V2117
Primary Sampling Unit: V2118
Identifying Unreliable Estimates:

As outlined in Section 4, it is recommended that victimization rates meeting either of the following criteria be flagged as unreliable. In addition, any estimate rounding to zero should not be displayed.
- RSE > 30%
- Numerator sample size ≤ 10

The percent relative standard errors of the victimization rates (VR) are calculated as:

\[
\% \text{ } RSE(VR) = \frac{SE(VR)}{VR} \times 100
\]

Estimates, standard errors, and unweighted sample sizes from the output above are included in Table D-3 (in the “VR,” “SE(VR),” and “n (num)” columns, respectively). Percent RSEs are calculated based on the formula above. Based on these recommendations, the estimated victimization rate for males is flagged as unreliable because the percent RSE is greater than 30 percent and the sample size of the numerator is less than or equal to 10. Because none of the estimates round to zero, all three estimates can be presented.

Table D-3. Identifying Low Quality Victimization Rates

<table>
<thead>
<tr>
<th>Domain</th>
<th>VR</th>
<th>SE(VR)</th>
<th>n (num)</th>
<th>%RSE(VR)</th>
<th>Flag as Unreliable?</th>
<th>Rounds to Zero?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>0.94815</td>
<td>0.16253</td>
<td>79</td>
<td>17.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>0.27602</td>
<td>0.0897</td>
<td>10</td>
<td>32.50</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1.59287</td>
<td>0.33234</td>
<td>69</td>
<td>20.86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>